Proximity Moving Horizon Estimation

Meriem Gharbi

ISBN 978-3-8325-5456-9
174 Seiten, Erscheinungsjahr: 2022
Preis: 45.00 €
In this thesis, we develop and analyze a novel framework for moving horizon estimation (MHE) of linear and nonlinear constrained discrete-time systems, which we refer to as proximity moving horizon estimation. The conceptual idea of the proposed framework is to employ a stabilizing a priori solution in order to ensure stability of MHE and to combine it with an online convex optimization in order to obtain an improved performance without jeopardizing stability. The goal of this thesis is to provide proximity-based MHE approaches with desirable theoretical properties and for which reliable and numerically efficient algorithms allow the estimator to be applied in real-time applications.

In more detail, we present constructive and simple MHE design procedures which are tailored to the considered class of dynamical systems in order to guarantee important properties of the resulting estimation error dynamics. Furthermore, we develop computationally efficient MHE algorithms in which a suboptimal state estimate is computed at each time instant after an arbitrary and limited number of optimization algorithm iterations. In particular, we introduce a novel class of anytime MHE algorithms which ensure desirable stability and performance properties of the estimator for any number of optimization algorithm iterations, including the case of a single iteration per time instant.

In addition to the obtained theoretical results, we discuss the tuning of the performance criteria in proximity MHE given prior knowledge on the system disturbances and illustrate the theoretical properties and practical benefits of the proposed approaches with various numerical examples from the literature.

Wollen auch Sie Ihre Dissertation veröffentlichen?

cover cover cover cover cover cover cover cover cover
Inhaltsverzeichnis (PDF)

Leseprobe (PDF)


  • Moving horizon estimation
  • Stability
  • Performance
  • Optimization algorithms


45.00 €
auf Lager
Versandkostenfrei innerhalb Deutschlands

42.00 €
55.00 €
59.00 €

(D) = innerhalb Deutschlands
(W) = außerhalb Deutschlands

*Sie können das eBook (PDF) entweder einzeln herunterladen oder in Kombination mit dem gedruckten Buch (eBundle) erwerben. Der Erwerb beider Optionen wird über PayPal abgerechnet - zur Nutzung muss aber kein PayPal-Account angelegt werden. Mit dem Erwerb des eBooks bzw. eBundles akzeptieren Sie unsere Lizenzbedingungen für eBooks.

Bei Interesse an Multiuser- oder Campus-Lizenzen (MyLibrary) füllen Sie bitte das Formular aus oder schreiben Sie eine email an