Inhaltsverzeichnis

V	orwo	rt des	Herausgebers	iii
V	orwo	rt des	Autors	v
K	urzfa	ssung		. vii
In	halts	verzei	ichnis	ix
A	bkürz	zunge	n und Indizes	xi
F	ormel	lzeich	en	. xv
1		Einl	eitung und Motivation	1
	1.1		Effizienzsteigerung des Antriebsstrangs muss trotz Hybridisierung und Elektromobilitä er voranschreiten	
1.2 Chancen durch Evolu		Char	ncen durch Evolution des Antriebsstrangs mittels Restwärmenutzung	4
	1.3	Die l	Revolution des Antriebsstrangs durch Tiefenintegration und Substitution	5
	1.4	Auft	oau der Arbeit	6
2		Fahi	rzeugspezifische und thermodynamische Grundlagen der Restwärmenutzung	7
	2.1	Das	Fahrzeugkühlsystem als Basis für Integration und Substitution	7
	2.1.1		Niedertemperaturkühlkreisläufe	8
	2.1	1.2	Hochtemperaturkühlkreislauf	9
	2.1	1.3	Motorkühlung	. 11
	2.1	1.4	Kühlpaket im Frontend – Wärmesenke und begrenzendes Element	. 12
	2.2	Ther	modynamische Grundlagen	. 16
	2.2	2.1	Der Carnot'sche Kreisprozess und die Hauptsätze der Thermodynamik	. 16
	2.2	2.2	Prozess- und Zustandsgrößen	. 19
2.		2.3	Charakterisierungen von Mehrphasenströmungen.	. 20
	2.2	2.4	Exergie & Anergie	. 21
	2.3	Ther	mische Rekuperation in der Fahrzeuganwendung	. 22
	2.4	Krei	slauf auf Basis von Clausius und Rankine	. 28
	2.4	4.1	Add-On Rankine Kreisläufe	. 31
	2.4	4.2	Integrale Rankine Kreisläufe	. 34
3		Syst	emlayout und Komponentendesign des IRWN-Kreislaufs	. 37
	3.1	Wah	l des Antriebslayouts und Basisfahrzeugs	. 37
	3.2	Syste	emdesign und Betriebsmodi	. 39
	3.2	2.1	Der Kühlungsmodus	. 40
	3.2	2.2	Der Rekuperationsmodus	. 43
	3.3		nponenten des IRWN-Systems – Eigenschaften, Anforderungen und stitutionsvermögen	. 48

3.3	3.1	Arbeitsmedienleitungen und Kreislaufverbindung
3.3	3.2	Wärmeübertrager Motor mit Mischkreis
3.3	3.3	Abgaswärmeübertrager als Dampferzeuger mit Abgasbypass
3.3.4 3.3.5 3.3.6		Expansionsmaschine
		Kondensator und Kühlluftregelung
		Speisepumpe
3.3	3.7	Ausgleichsbehälter 62
3.3	3.8	Arbeitsmedienauswahl unter Berücksichtigung der Prozessrandbedingungen
3.3.9		Gesamtüberblick
1		triebnahme und Leistungsoptimierung des IRWN-Systems am orenprüfstand
4.1		Kühlungsmodus in Anwendung – Einfluss des Druckniveaus auf Bauteiltemperaturen ibertragenen Wärmestrom
4.2		Rekuperationsbetrieb: Beschreibung von Regelungsgrößen und Auswirkungen auf die essführung
4.2	2.1	Systemniederdruck: Variationsmöglichkeiten und prozessspezifische Optimierung \dots 74
4.2	2.2	Einflüsse des Motortemperaturniveaus auf die Kreislaufbetriebsparameter
4.2.3 4.2.4 4.2.5		Darstellung einer optimierten Prozessregelung für Top- und Bottoming-Cycle durch Vorlauftemperaturvariation am Verbrennungsmotor
		Welche Einflüsse hat eine Änderung der Wärmesenkenleistung bei konstantem Niederdruck?
		Abhängigkeit von Niederdruck und Kondensatoraustrittstemperatur für einen sicheren Betrieb bei transientem Anforderungsprofil
4.2	2.6	Weitere Einflussnahme auf die Prozessführung
4.2.7		Kombinierte Bewertung der möglichen Einflussnahmen hinsichtlich optimiertem Prozesswirkungsgrad und Systemrobustheit
5	Zusa	mmenfassung & Ausblick
Abbild	ungsv	erzeichnis
Гabell	enverz	eichnis
[itorot		100