
Abstract

Computers have become increasingly present in our daily lives over the past
years, thanks to several converging factors such as the development of highly
efficient hardware in terms of storage and computational power capabilities, or the
trivialisation of keeping portable computing devices - such as smartphones - on
oneself at all times. This trend - already predicted decades ago by the founder
of ubiquitous computing Mark Weiser - has led to an increase in unobtrusive and
invisible wearable sensors, facilitating the process of acquiring data, and especially
time-series ones. At the same time, remarkable progress in the development of
even more effective machine learning techniques has been observed over the past
decades, notably regarding approaches to learn relevant features to provide an
abstracted representation of the data. The most notable phenomenon illustrating
this trend is the fast rise in popularity of deep learning, which refers to machine
learning using Deep Neural Networks (DNNs), and is reputed to yield remarkable
performances when large amounts of data are available. The conjunction of those
two trends has opened up various new possibilities of application as evidenced by
the growing research community of ubiquitous computing.

Despite this favourable context, the application of machine learning approaches -
and more specifically deep learning - still faces obstacles. The success of obtaining
a proper machine learning model strongly hinges on the quality and quantity of
data used to train it. On the one hand, most breakthroughs using DNNs over
the past years have been made in application fields using images thanks to the
availability of very large benchmark image datasets such as ImageNet. On the
other hand, time-series data - which represent the most common type of data in
ubiquitous computing application - remain scarce: data acquisition campaigns with
wearable sensors are costly in terms of time and resources in practice, and the
large diversity in types of time-series data acquired by different sensors makes the
building of an equivalent of ImageNet for time-series difficult. While deep learning
using time-series data has already been successfully applied in various contexts in
past studies, their scope is usually limited to their specific application field, and not
always rigorously compared with other state-of-the-art machine learning approaches.

In this context, this thesis proposes to explore the topic of using deep learning for
time-series classification, which is one of the most commonly encountered machine
learning problems in ubiquitous computing applications. It attempts in particular
to provide elements of answer to two questions which have not been fully addressed
in the literature: 1. Is it beneficial to use deep learning for time-series classification
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over other traditional machine learning approaches when data are limited or scarce?
2. Is there a way to bypass data scarcity issues to enhance the performances of
DNNs for time-series classification? The thesis is structured as follows: after an
introduction presenting the context with more details and providing examples
illustrating the difficulties of applying deep learning in practice, each question is
investigated more closely in one dedicated Chapter.

The first part of the thesis (Chapter 2) explores the first of the two aforementioned
questions in the context of sensor-based Human Activity Recognition (HAR).
Sensor-based HAR has established itself as the most popular application of
ubiquitous computing due to its numerous potential applications in real-life, the
affordability and the pervasiveness of motion-based sensors, and the simplicity
of data annotation which has led to relatively higher amounts of available data.
The Chapter focuses more specifically on the question of how to obtain proper
feature representations of the data for HAR. While abundant, the sensor-based
HAR literature on this topic has so far been mostly scattered, with little efforts
to compare the performances of the different approaches on a fair basis. In this
Chapter, a comparative study between various state-of-the-art feature extraction
approaches - supervised or unsupervised, centred around feature engineering or
feature learning with DNNs - is detailed. An evaluation framework allowing a strict
comparison is firstly defined and used to carry out extensive experiments on two
sensor-based HAR benchmark datasets: OPPORTUNITY and UniMiB-SHAR.
The results highlighted three main phenomena: the superiority of supervised feature
learning approaches over unsupervised ones, the dominance of methods using deep
learning to learn features over those relying on manual feature engineering in
all tested configurations, and the effectiveness of hybrid DNN models combining
convolutional and recurrent layers. The study therefore validates the effectiveness
of deep learning for time-series classification in the context of sensor-based HAR.

The second part of this thesis (Chapter 3) focuses on time-series transfer learning to
bypass data scarcity issues and enhance the performances of DNNs for time-series
classification. Transfer learning has become state-of-the-art when image modalities
are involved due to its proven and repeated ability to let DNNs yield better classi-
fication performances than without transfer. Time-series transfer learning however
still remains relatively unexplored due to lower quantities of available time-series
data, and large differences in data formats depending on which sensors were used
to acquire them. Several transfer methods have been proposed in the literature,
but their scope is usually limited either to specific application fields, to strict
conditions of similarity between the source and target domains, or to single-channel
time-series data. A new time-series transfer learning approach addressing those
issues was developed in the frame of this thesis. It proposes to use sensor modality
classification as an auxiliary task to learn general transferable time-series features.
Time-series datasets related to various applications of ubiquitous computing are
firstly aggregated to build a source domain. A DNN processing single-channel
data (sDNN) is trained to recognise sensor modalities, and its weights are then
transferred to a DNN architecture processing multichannel time-series (mDNN)

6



on the target domain. The mDNN is finally fine-tuned on the target domain
to solve the target problem. This process can be applied to any target domain
using multichannel time-series data no matter how many channels were used,
thus addressing the limitations of existing approaches. Experiments carried out
for two distinct target applications of ubiquitous computing - sensor based HAR
and Emotion Recognition - showed that the proposed transfer approach yields
classification performance improvements compared to not using any transfer. Such
results indicate its strong potential for applications of ubiquitous computing relying
on time-series classification.
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Zusammenfassung

Computer sind in den letzten Jahren in unserem täglichen Leben, dank mehrerer
konvergierender Faktoren wie der Entwicklung hocheffizienter Hardware in Bezug
auf Speicher- und Rechenleistung oder der Möglichkeit, tragbare Computergeräte
- wie Smartphones - ständig bei sich zu haben, immer präsenter geworden.
Dieser Trend - bereits vor Jahrzehnten von Mark Weiser, dem Begründer des
Ubiquitous Computing, vorausgesagt - hat zu einer Zunahme von unauffälligen und
unsichtbaren tragbaren Sensoren geführt, die die Erfassung von Daten, insbeson-
dere von Zeitreihen, erleichtern. Gleichzeitig wurden in den letzten Jahrzehnten
bemerkenswerte Fortschritte bei der Entwicklung noch effektiverer maschineller
Lerntechniken beobachtet, insbesondere in Bezug auf Ansätze zum Erlernen relevan-
ter Merkmale, um eine abstrahierte Darstellung der Daten zu erhalten. Besonders
hervorgehoben wird dies durch den aktuellen Trend und schnellen Anstieg der
Popularität von Deep Learning, das auf maschinelles Lernen unter Verwendung von
Deep Neural Networks (DNNs) beruht und dem nachgesagt wird bemerkenswerte
Leistungen zu erzielen, falls große Datenmengen verfügbar sind. Die Verbindung
dieser beiden Trends hat verschiedene neue Anwendungsmöglichkeiten eröffnet, wie
die wachsende Forschungsgemeinschaft des Ubiquitous Computing beweist.

Trotz dieser günstigen Ausgangssituation stößt die Anwendung von Ansätzen des
maschinellen Lernens - und insbesondere des Deep Learnings - immer noch auf
Hindernisse. Der Erfolg eines geeigneten Modells hängt stark von der Qualität
und Quantität der zum Training verwendeten Daten ab. Einerseits wurden die
meisten Durchbrüche mit DNNs in den letzten Jahren in Anwendungsbereichen
erzielt, die Bilder verwenden, dank der Verfügbarkeit von sehr großen Benchmark-
Bilddatensätzen wie ImageNet. Auf der anderen Seite sind Zeitreihendaten - die
die häufigste Art von Daten in Ubiquitous-Computing-Anwendungen darstellen -
nach wie vor rar: Datenerfassungskampagnen mit tragbaren Sensoren sind in der
Praxis zeitaufwendig- und ressourcenintensiv, und die große Vielfalt an Arten von
Zeitreihendaten, die von verschiedenen Sensoren erfasst werden, macht den Aufbau
eines Äquivalents zu ImageNet für Zeitserien schwierig. Während Deep Learning
unter Verwendung von Zeitreihendaten in vergangenen Studien bereits erfolgreich
in verschiedenen Kontexten angewendet wurde, ist ihr Umfang in der Regel auf
ihr spezifisches Anwendungsgebiet beschränkt und wird nicht immer rigoros mit
anderen State-of-the-Art-Maschinenlernansätzen verglichen.

In diesem Zusammenhang schlägt die vorliegende Arbeit vor, das Thema der
Verwendung von Deep Learning für die Klassifizierung von Zeitreihen zu erforschen,
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welches eines der am häufigsten auftretenden maschinellen Lernprobleme in
Ubiquitous-Computing-Anwendungen darstellt. Es wird insbesondere versucht,
Antworten auf die foldgenden zwei Fragen zu liefern, die in der Literatur noch nicht
vollständig behandelt wurden: 1. Ist es vorteilhaft, Deep Learning für die Zeitrei-
henklassifizierung gegenüber anderen traditionellen maschinellen Lernansätzen zu
verwenden, wenn die Daten begrenzt oder knapp sind? 2. Gibt es eine Möglichkeit,
das Problem der Datenknappheit zu umgehen, um die Leistung von DNNs für die
Zeitreihenklassifikation zu verbessern? Die Arbeit ist wie folgt strukturiert: Nach
einer Einleitung, die den Kontext detaillierter darstellt und Beispiele liefert, die die
Schwierigkeiten bei der Anwendung von Deep Learning in der Praxis illustrieren,
werden die zwei Kernfragen in jeweils eigenen Kapiteln genauer untersucht.

Der erste Teil der Arbeit (Kapitel 2) untersucht die erste der beiden oben genan-
nten Fragen im Kontext der sensorbasierten Human Activity Recognition (HAR).
Sensorbasierte HAR hat sich aufgrund der zahlreichen Anwendungsmöglichkeiten
im realen Leben, der Erschwinglichkeit und der weiten Verbreitung von bewe-
gungsbasierten Sensoren sowie der Einfachheit der Datenannotation, die zu relativ
großen Datenmengen geführt hat, als die populärste Anwendung des Ubiquitous
Computing etabliert. Dieses Kapitel konzentriert sich speziell auf die Frage,
wie man geeignete Merkmalsrepräsentationen der Daten für HAR erhält. Die
sensorgestützte HAR-Literatur zu diesem Thema ist zwar reichlich vorhanden,
aber bisher nur verstreut aufzufinden und es gibt kaum Bemühungen, die Leis-
tungen der verschiedenen Ansätze auf einer fairen Basis zu vergleichen. In diesem
Kapitel wird eine vergleichende Studie zwischen verschiedenen State-of-the-Art-
Merkmalsextraktionsansätzen - überwacht oder unüberwacht, mit Schwerpunkt auf
Feature-Engineering oder Feature Learning mit DNNs - detailliert beschrieben.
Ein Evaluierungsrahmen, der einen strengen Vergleich ermöglicht, wird zunächst
definiert und zur Durchführung umfangreicher Experimente an zwei sensorbasierten
HAR-Benchmark-Datensätzen verwendet: OPPORTUNITY und UniMiB-SHAR.
Die Ergebnisse heben drei Hauptphänomene hervor: die überlegenheit von
überwachten Feature-Learning-Ansätzen gegenüber unbeaufsichtigten, die Dom-
inanz von Methoden, die Deep Learning zum Lernen von Features verwenden,
gegenüber solchen, die sich auf manuelles Feature-Engineering in allen getesteten
Konfigurationen verlassen, und die Effektivität von hybriden DNN-Modellen, die
convolutional und recurrent Schichten kombinieren. Die Studie validiert daher die
Effektivität von Deep Learning für die Zeitreihenklassifikation im Kontext von
sensorbasiertem HAR.

Der zweite Teil dieser Arbeit (Kapitel 3) konzentriert sich auf transfer learning
für Zeitreihendaten, um die Probleme der Datenknappheit zu umgehen und
die Leistung von DNNs für die Zeitreihenklassifikation zu verbessern. Transfer
Lerning hat sich als State-of-the-Art Ansatz etabliert, insbesondere wenn es um
Bildmodalitäten geht, da es bewiesen wurde, dass DNNs mit der Methodik bessere
Klassifizierungsergebnisse erzielen können als ohne. Zeitreihen Transfer Learning
ist jedoch noch relativ unerforscht, da weniger Zeitseriendaten zur Verfügung stehen
und es große Unterschiede in den Datenformaten gibt, je nachdem, welche Sensoren
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für die Datenerfassung verwendet wurden. In der Literatur wurden mehrere
Transfermethoden vorgeschlagen, aber ihr Umfang ist in der Regel entweder auf
bestimmte Anwendungsbereiche, auf strenge ähnlichkeitsbedingungen zwischen
dem Quell- und dem Zielgebiet oder auf einkanalige Zeitreihendaten beschränkt.
Im Rahmen dieser Arbeit wurde ein neuer Zeitreihen Transfer Learning Ansatz
entwickelt, der diese Probleme adressiert. Es wird vorgeschlagen, die Klassifizierung
der Sensormodalität als Hilfsaufgabe zu verwenden, um allgemeine übertragbare
Zeitserienmerkmale zu lernen. Zeitseriendatensätze, die sich auf verschiedene
Anwendungen des Ubiquitous Computing beziehen, werden zunächst aggregiert,
um eine Quelldomäne zu bilden. Ein DNN, das einkanalige Daten verarbeitet
(sDNN), wird trainiert, um Sensormodalitäten zu erkennen, und seine Gewichte
werden dann auf eine DNN-Architektur übertragen, die mehrkanalige Zeitreihen
(mDNN) in der Zieldomäne verarbeitet. Das mDNN wird schließlich auf der
Zieldomäne feinabgestimmt, um das Zielproblem zu lösen. Dieser Prozess kann auf
jede Zieldomäne mit Mehrkanal-Zeitreihendaten angewendet werden, unabhängig
davon, wie viele Kanäle verwendet wurden, und behebt so die Einschränkungen
bestehender Ansätze. Experimente, die für zwei verschiedene Zielanwendungen
des Ubiquitous Computing durchgeführt wurden - sensorbasierte HAR und Emo-
tionserkennung - haben gezeigt, dass der vorgeschlagene Transfer-Ansatz eine
Verbesserung der Klassifikationsleistung im Vergleich zum Verzicht auf einen
Transfer liefert. Diese Ergebnisse weisen auf das große Potenzial des Ansatzes
für Anwendungen des Ubiquitous Computing hin, die auf der Klassifizierung von
Zeitreihen beruhen.
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Chapter 1

Introduction

The past years have seen a tremendous rise in machine learning applications due
to multiple converging factors such as the development of computer hardware with
increased processing power and data storage capacities, or societal factors like the
democratisation of electronic devices - such as smartphones - taking an increasing
place in everyone’s daily life. Those trends have received an increasing attention
from researchers studying how to take leverage of the increasing availability of such
devices, leading to the emergence of the research field of ubiquitous computing -
term firstly coined by Mark Weiser who predicted those trends three decades ago [1].

Ubiquitous computing is a field centred around the study of wearable devices, which
refers to electronic devices that can easily be carried by its user. It encompasses
a large variety of topics such as the design of practical, unobtrusive and powerful
wearable devices, the establishment of communication protocols to retrieve their
data in optimal conditions, or the processing of the aforementioned data for
complex applications requiring some highly-abstract reasoning. It consequently has
a significant overlap with various other research fields. One of them is machine
learning which refers to an ensemble of techniques to train computers using sensor
data to perform complex tasks requiring high-level reasoning, and is widely used to
create systems able to provide meaningful applications using the collected data by
the wearable devices.

Machine learning heavily relies on the availability of data which should be in
quantities as large as possible to train models in optimal conditions. For this
reason, it has especially benefitted from the development of ubiquitous computing,
and more specifically from the explosion in popularity of wearable sensors of all
types such as RGB cameras embedded in smartphones or other devices providing
physiological or behavioural data from the wearer. The growing availability of
data and the increasing simplicity of sharing them all over the world has led to
the emergence of more powerful machine learning approaches over time. The
most widely known example of those are Artificial Neural Networks (ANNs),
which are the cornerstone of the now famous and pervasive deep learning. Despite
having been discovered more than 50 years ago, ANNs truly started to explode in
popularity only a few years ago following the appearance of increasingly powerful
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computational units which simplified their training process, and after ANNs
significantly outperformed the state-of-the-art for RGB image classification in the
ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC 2012) [2]. After
their initial success, the machine learning research community was swept away by
the deep learning hype, in particular in the field of image processing where data
are abundant thanks to past efforts for large-scale data collection and annotation
such as the ImageNet dataset [3]. After a growing number of studies reported
performances never attained previously for several key image processing problems
like image classification [2, 4], image segmentation [4], object detection in images
[5, 6, 7], etc., ANNs have established themselves as the main state-of-the-art
approach for machine learning in the field over the past years.

In the light of the achievements obtained by deep learning on image modalities,
the machine learning community has naturally drawn its attention to ANNs for the
processing of other types of data. The most important one of those are time-series
data which designate one-dimensional series of data readings acquired successively
in time. Time-series data have a paramount importance in ubiquitous computing
because of how sensors measuring one-dimensional series of values are commonly
used in ubiquitous computing applications. Numerous past works of the literature
have shown promising results for ANNs in several application fields of ubiquitous
computing such as sensor-based Human Activity Recognition [8, 9, 10]. But the
relative scarcity of time-series datasets (compared to image ones) coupled to the
large data requirements to properly train an ANN have limited the application of
deep learning on time-series in practice. The objective of this thesis is to provide
an additional contribution to the scientific field of time-series deep learning by
rigorously comparing its performances to other state-of-the-art machine learning
methods and exploring approaches to make its practical application easier.

The rest of the Section is structured as follows: Section 1.1 firstly provides more
details about the fundamental concepts surrounding the context of this thesis such
as ubiquitous computing (Section 1.1.1), time-series classification (Section 1.1.2) and
deep learning (Section 1.1.3). Section 1.2 then expands on the motivation behind
this thesis and provides two illustrative examples taken from the experience of the
author of this thesis. Section 1.3 explicitly states the contribution of this thesis.
Finally, Section 1.4 presents the overall layout of the thesis.

1.1 Fundamental concepts

This Section presents a general overview of the fundamental concepts associated
with the context in which this thesis takes place. Section 1.1.1 defines the concept
of ubiquitous computing in a more detailed way. Section 1.1.2 explains how machine
learning can be applied to ubiquitous computing applications. Finally, Section 1.1.3
provides more details on deep learning - i.e. machine learning with deep ANNs -
which supplanted traditional machine learning in many application fields.
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1.1.1 Ubiquitous computing

Past years have seen notable technological progress with the explosion in numbers
of increasingly powerful, small computers and other smart devices. A prime
example illustrating this phenomenon is the constantly increasing popularity and
pervasiveness of smartphones. Invented in 1992 by IBM (USA) and popularised to
the general public with the release of the first iPhone (Apple Inc., USA) in 2007,
smartphones have continuously evolved to provide not only an increasing amount
of services, but also of portable sensors. It is now estimated that 3.5 billion people
in the world own a smartphone as of 2020, representing a reach of 45.04% of the
world population less than three decades after their invention1.

The remarkably fast spread of increasingly complex and powerful devices is often
seen as a consequence of Moore’s law, which refers to an observation made in
1965 by the then CEO of Intel Gordon Moore who predicted that the number of
transistors in an integrated circuit would double every two years, leading to an
exponential increase in computational power [11]. Initially estimated to last for
only one decade, this trend has remained true until today. While Moore’s law
validity will necessarily come to an end at some point, experts have not been able
to accurately predict when it would happen, with the current estimations placing
it somewhere in the upcoming decade2.

The implications of Moore’s law on technological advances and their associated soci-
etal changes were understood fairly early on, with the American computer scientist
Mark Weiser introducing for the first time the term ubiquitous computing to re-
fer to computers becoming pervasive in everyone’s daily life [1] in 1988. Later on,
Weiser specified his vision by introducing four fundamental principles defining goals
for ubiquitous-computing-related applications [12]:

1. Computers should help their users.

2. While providing their assistance, computers should be quiet and invisible.

3. Computers should ”extend the unconscious” of their users, by helping them
to make decisions intuitively.

4. Technology should create calm.

Over time, a community aggregated to work on the development of systems
following Weiser’s four founding principles. The ubiquitous computing research
area nowadays includes a very wide array of fields such as hardware development
to obtain increasingly small and performing sensors, science of design to develop
unobtrusive and user-friendly devices, communication and network analysis to
develop protocols and methods allowing better and more reliable data transmission

1Statistics taken from https://www.statista.com/statistics/330695/number-of-

smartphone-users-worldwide/ (last accessed on 24/05/2021)
2Information taken from https://www.androidauthority.com/moores-law-smartphones-

1088760/ (last accessed on 24/05/2021)

15

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.androidauthority.com/moores-law-smartphones-1088760/
https://www.androidauthority.com/moores-law-smartphones-1088760/


or data analysis and machine learning to detect patterns in the data obtained from
the wearable devices.

Ubiquitous computing has in particular very close connections with artificial in-
telligence, which refers to the science of training computers to perform complex
tasks, and of which data science and machine learning are sub-fields. Weiser’s first
and third principles both suggest that computers should assist their users in their
decision making, which most of the time involves highly-abstract reasoning. The
development of an ubiquitous computing system therefore requires machines to be
able to understand and extend such reasoning, which can be provided by machine
learning techniques. Since the latter rely on large quantities of data to train the
mathematical models required to achieve this objective, the recent expansion of
ubiquitous computing has been seen as an opportunity by the machine learning
community to develop new means of getting data via wearable devices, leading to
an explosion in the number of intelligent systems for many applications such as
health monitoring [13], interactive learning systems [14], and assisted living systems
for vulnerable people [15].

1.1.2 Machine learning and time-series classification

Machine learning refers to the study of mathematical algorithms which can be
used to teach computers to perform complex tasks usually requiring highly-abstract
reasoning to be solved. The fundamental way machine learning approaches this
goal is by analysing data related to the task considered to train a mathematical
model. Once learned from the data, such model is then given to the machine to
be re-used on ”unseen” real-life data, i.e. data different from the training one
used previously to train the model (also referred to as training data). It should be
noted that machine learning is notably reliant on large quantities of data to work
properly, since more of them increases the likelihood that the trained model will
learn proper assumptions while generalising well on ”unseen” data (which is often
referred to as the bias-variance trade-off [16]). Initially evoked for the first time by
the American computer scientist A. L. Samuel in 1959 [17], machine learning has
become increasingly prevalent over the past decades due to its important overlap
with other rising fields of study such as algorithmic, statistics, computer science,
data analysis or mathematical optimisation, and due to the large range of applica-
tions it could solve. It is for instance widely used in ubiquitous-computing-related
studies as a means to provide computers with the ”intelligence” required to as-
sist their users in making decisions, thus fulfilling Weiser’s first and fourth principles.

Machine learning approaches can be classified into several categories depending on
which type of data they require to properly train their models, and how they use
them. Three main families of machine learning approaches are usually distinguished:

� Supervised learning which relies on using data annotated with labels indi-
cating the desired model output for each example of the dataset.
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� Unsupervised learning which attempts to detect patterns in the data with-
out using any labelling information.

� Semi-supervised learning which lies in-between supervised and unsuper-
vised learning and attempts to train models using incompletely labelled
datasets.

The task of acquiring labels to annotate data - while appearing simple - can prove to
be very complicated in real-life due to multiple reasons ranging from labels simply
being difficult to obtain (e.g. wearable-emotion recognition described in Section
1.2.2) to the quantity of data being too large to annotate in a reasonable amount
of time or resources (e.g. the 14 million images of the ImageNet dataset [3]). While
labels are not needed in an unsupervised learning context, supervised learning
has remained the most widely used category of machine learning approaches
until now because of the notably better performances it has obtained compared
to semi-supervised or unsupervised learning techniques in most application domains.

When a dataset and its associated labels are available, supervised learning defines
and uses a mathematical framework to solve a specific problem for a particular
application. Most supervised learning methods do this by translating the problem
either into a regression or classification problem, where regression approaches
attempt to train a model to associate its inputs with a specific output value, while
classification ones aim at obtaining models able to associate their input data with
categorical outputs. Regression and classification approaches are fairly similar in
terms of solving procedures or available algorithms. Both aim at approximating a
function φ : x → y which maps input data samples x to continuous and discrete
labels y, respectively. This is done by computing features which refer to values
computed on the input data that can be used to properly represent them in an
abstract way for the considered problem to solve. Features allow to associate each
data sample x with a feature vector f(x) = {f1(x), f2(x), ..., fn(x)} ∈ Rn where
n ∈ N ∗ is the number of computed features. A mathematical model is then trained
in the feature space Rn to match each feature vector f(x) with its associated label y.

In practice, regression and classification problems however differ in terms of
difficulty, with classification models usually being easier to train than regression
ones. While any machine learning approach requires large quantities of training
data and associated labels, regression approaches tend to need more of them
than classification in order to precisely approximate their continuous targets.
Classification has therefore become the preponderant framework in most machine
learning applications.

The reliance of machine learning on large quantities of available data had the
consequence of splitting the research community depending on which sensor
modalities they use to provide input data for their models. Machine learning
approaches remain the same independently of what type of data is used in the
training set. In practice however, it has been observed that the relevance of the
trained models increases substantially the more data is available. As a consequence,
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a divide has effectively appeared over the past decade between researchers working
with image modalities - where the quantity of available data is plentiful due to
the pervasiveness of cameras and some initiatives to build very large scale datasets
like ImageNet [3] - and those working with other sensor modalities. Ubiquitous
computing researchers tend to fall into the second category as the intrusiveness
(and sometimes obtrusiveness) of cameras could be considered as a contradiction
of Weiser’s second principle of ”computers being invisible to the user”. As a
result, ubiquitous computing applications have favoured the use of wearable sensors
providing data values sequentially in time, also commonly referred to as time-series
data.

In this context, time-series classification has become an important topic for sensor-
based applications, with abundant works in the past literature trying to propose
high performing classification approaches in many application fields such as Human
Activity Recognition, sensor-based emotion and pain recognition (respectively dis-
cussed in Sections 2, 1.2.2 and 1.2.3). Mirroring the trends in the image processing
research community, time-series classification has in particular been strongly im-
pacted by the rise of deep learning, which has established itself as the new baseline
approach over the past years.

1.1.3 Deep learning

Deep learning is a term introduced by the American artificial learning professor
Rina Dechter in 1986 [18] to refer to machine learning using deep Artificial Neural
Networks (ANNs).

ANNs are a class of mathematical models whose principles are loosely based on how
biological neurons in the human brain work. They consist of a set of interconnected
artificial neurons, where each artificial neuron is a very simple non-linear compu-
tational unit as shown in Figure 1.1. Each neuron takes a multidimensional input
x = {x1, x2, ..., xn} ∈ Rn with n ∈ N ∗ and outputs a single value y ∈ R using the
following equation:

y = σ(
n∑
k=1

wkxk) + b

where σ is a non-linear function referred to as activation function,
∀k ∈ {1, 2, ..., n}, wk ∈ R are internal parameters referred to as neural weights and
b ∈ R is an offset parameter called neural bias.

In an ANN, artificial neurons are organised in a layer-wise structure with the outputs
of the neurons of one layer being used as inputs of the neurons of the next layer
as shown in Figure 1.2. A layer of an ANN with nin ∈ N ∗ inputs and nout ∈ N ∗
outputs can therefore be mathematically represented by the formula:

y = σ(Wx + b)
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Figure 1.1: Graph of an artificial neuron: n ∈ N ∗ inputs {x1, x2, ..., xn} ∈ Rn are
multiplied by n weights {w1, w2, ..., wn} ∈ Rn, summed together, added to a bias
b ∈ R and then sent throught a non-linear function σ to provide an output value
y ∈ R.

where y ∈ Rnout is the vector of the layer neural outputs, x ∈ Rnin is the vector
of the layer inputs, W ∈ Rnout×nin is the matrix of weights connecting the neurons
to the ones of the previous layer and b ∈ Rnout is the vector containing the biases
of the neurons of the layer. Similarly, an ANN stacking N ∈ N ∗ layers containing
n(l) ∈ N ∗ neurons each (for 1 ≤ l ≤ N) can be mathematically represented as a
series of composite activation functions:

y(l) =

{
σ(W(l)x + b(l)) if l = 1
σ(W(l)y(l−1) + b(l)) if 2 ≤ l ≤ N

where y(l) ∈ Rn(l)
, W(l) ∈ Rn(l)×n(l−1)

, b(l) ∈ Rn(l)
respectively refer to the output,

weight matrix and biases of layer l ∈ {1, 2, ..., N}, and x to the input of the network.

Figure 1.2: Example of an artificial neural network with n ∈ N ∗ inputs, m ∈ N ∗
outputs and L ∈ N ∗ layers. Each layer l has nl ∈ N ∗ neurons (for 1 6 l 6 L). y

(l)
i

and w
(l)
i,j respectively designate the output of the ith neuron in the lth layer and the

weight connecting the ith neuron on layer l to the jth neuron of layer l + 1.
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The first and last layers of an ANN are respectively called input and output layers,
while intermediate ones are referred to as hidden layers. An ANN is considered to
be deep as long as it has at least two hidden layers, and is in that case referred to
as Deep Neural Network (DNN). ANNs can be used for regression or classification
purposes by adapting the size and activation functions of their output layer. For
classification in particular, the common practice consists of setting the number of
output neurons to the number of classes and using a softmax activation function
[19]. Each neuron of a softmax output layer yields a value between 0 and 1 and
the sum of all softmax outputs is equal to 1. The output of one softmax neuron
can therefore be assimilated to a probability score of the ANN input data being
associated to its corresponding class.

The training of an ANN (or DNN) refers to the process of fine-tuning the internal
parameters of the model - weights and biases of the neurons of all layers - so that
it can produce the desired outputs on its output layer. Neural weights and biases
are usually initialised to values following an initialisation scheme that proved its
effectiveness in practice, such as the Glorot initialisation strategy [20] which picks
values at random in an interval whose boundaries depend on the sizes of the current
and next layers for each neuron. Weights and biases are then iteratively updated
during the training process. This is performed by firstly defining a loss function L
which computes the errors between the expected and neural outputs, and then min-
imising the loss function using a mathematical optimisation approach. For ANNs,
the most commonly used method is the gradient descent approach which consists in
iteratively updating each internal parameter θ ∈ R of a given ANN (i.e. weight or
bias) in the opposite direction of the derivative of the loss function with respect to
θ, i.e.

∀θ , θ ← θ − λ∂L
∂θ

(x)

where λ ∈ R+∗ is a parameter to control the speed of updates called learning rate
and x ∈ Rn an input example of the training set. The updating process is repeated
for all samples x of the training set to complete one epoch. For ANNs, ∂L

∂θ
(x) can only

be directly computed if θ is a parameter belonging to the output layer by using the
chain rule of derivation. The updates to the parameters belonging to the other layers
are performed by using the backpropagation algorithm [21] which back-propagates
the loss to the neurons of the previous layers using the chain rule of derivation. More
in details, using the following notations:

� N ∈ N ∗ number of layers of the ANN

� n(l) ∈ N ∗ number of neurons of layer l (with 1 ≤ l ≤ N)

� L loss function

� σ activation function (assumed to be the same for all neurons of the ANN)

� w
(l)
ij ∈ R weight between the ith neuron of layer l − 1 and the jth neuron of

layer l (with 2 ≤ l ≤ N)
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� y
(l)
j ∈ R output of the jth neuron of layer l

� b
(l)
j ∈ R bias of the jth neuron of layer l

� s
(l)
j ∈ R weighted sum of inputs of the jth neuron of layer l, i.e. y

(l)
j =

σ(s
(l)
j + b

(l)
j )

it can be shown that

∂L
∂w

(l)
ij

(x) = s
(l−1)
i δ

(l)
j

with

δ
(l)
j =


∂σ(s

(l)
j )

∂s
(l)
j

∂L
∂y

(l)
j

(x) if l = N

∂σ(s
(l)
j )

∂s
(l)
j

∑n(l)

k=1wjkδ
(l+1)
k otherwise.

Neural biases are updated in a similar way as weights by the backpropagation al-
gorithm by considering them as a neural weight associated with a constant input of 1.

ANNs are fairly old models whose origins are usually reported to go back as far as
1943, when the American scientists Warren McCulloch and Walter Pitts proposed a
simplified version of the artificial neuron called Threshold Logic Unit [22]. This idea
was later on expanded by various researchers such as the American psychologist
F. Rosenblatt who introduced the perceptron model in 1958 [23] which served as a
basis for the current modelling of artificial neurons, or the Ukrainian mathematician
A. Ivakhnenko who was the first to propose a network structure featuring several
layers in 1967 [24]. DNNs were however dismissed for a long time because they
were considered as too complex to train properly. Methods to train DNNs based
on gradient descent approaches had been found as early as 1974 [25] but could
not be applied in practice due to high complexity caused by the high number of
parameters in an ANN, associated with hardware-related limitations. It is only
during the last decade that the training of ANNs - and more specifically DNNs -
has become practical with researches highlighting the possibility to take leverage
of high computational power units such as Graphics Processing Units (GPUs) to
properly apply the backpropagation algorithm to large DNNs [26]. In the wake of
those findings, deep learning started to yield state-of-the-art performances largely
outperforming other traditional machine learning approaches, in particular in the
field of image processing. The beginning of the deep learning hype is considered to
coincide with the DNN AlexNet winning the ImageNet Large Scale Visual Recog-
nition Challenge in 2012 (ILSVRC2012) by a very large margin over other machine
learning methods [2]. Since then, DNNs have progressively established themselves
as the main machine learning approach when image modalities are involved, and
their use is now generalising to other types of modalities too, including time-series.
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In the wake of the popularisation of deep learning, the reasons for the success and
remarkable performances of DNNs have been thoroughly investigated in past re-
searches. Because of the complexity of the mathematical concepts surrounding such
models (analysis of complex composite functions), deep learning research has been
notably lacking a solid mathematical framework until now. As a result, most works
in the literature have remained fairly application-oriented so far. They have, how-
ever, highlighted a few key aspects of DNNs:

� Strong representative power: in 1989, the Universal Approximation The-
orem was demonstrated [27], which states that any basic ANN with a single
hidden layer containing an arbitrarily large (but finite) number of neurons
can approximate any continuous function taking its input values on compact
subsets ofRn, under the assumption that the activation function is not polyno-
mial. The implications of such findings are very impactful as they suggest that
ANNs could be theoretically used to solve a very large variety of problems. In
practice, it was shown that the number of neurons required for a single-hidden
layer ANN to work properly might be too large to be practical depending on
the complexity of the function to approximate [28]. Past works have neverthe-
less shown that using DNNs instead of shallow models could still yield good
performances, largely outperforming traditional machine learning approaches
in several application domains - in particular related to image processing -
such as image classification [2, 7] and object detection [5, 4, 7].

� Flexibility and modularity: past researches showed that the traditional ar-
chitecture of DNNs could be altered to better fit some specific application prob-
lems without fundamentally changing the mathematical background behind
deep learning (gradient-descent-based training procedure especially). This has
in particular led to the emergence of Convolutional Neural Networks (CNNs)
pioneered by Kunihiko Fukushima [29] and Yann LeCun [30] for image-based
applications, or of Recurrent Neural Networks (RNNs) whose first successful
practical application was reported for speech recognition by Sepp Hochreiter
[31]. More details about both architectures will be reported in Section 2.3.2.
Alterations to the traditional DNN structure explored in the past literature
have also included combinations of different types of DNNs [2, 8].

� Feature learning: a study carried out by Matthew Zeiler in 2013 [32] high-
lighted an interesting property of CNNs by showing that each neuron in the
convolutional layers of the AlexNet model trained for image classification on
ImageNet [2] was detecting a specific visual pattern whose complexity in-
creased the deeper the layer was (e.g. straight lines or edges for neurons in
the first layers, specific object parts for neurons of the deeper layers). Such
findings suggest that each neuron learns a specific feature on the input data
whose level of abstraction is higher the deeper the layer this neuron belongs to
is. Other studies corroborated such behaviour, showing in particular that it
was also observed for other types of DNNs for applications other than image
classification such as speech recognition from audio data [33]. As a result,
deep learning has progressively taken the place of old traditional approaches
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relying on asking domain experts to suggest features for a specific classification
problem in such application fields.

� Scalability with big data: DNNs have shown to benefit from a large number
of training examples more than other traditional machine learning models for
regression or classification. Traditional approaches such as Support Vector
Machines (SVM) [34] or Random Forests (RF) [35] for instance both have a
training complexity at least quadratic with their number of training examples,
and therefore cannot be trained under reasonable amounts of time on large
datasets in practice. The compatibility of deep learning to the current era
of big data - where large amounts of data are increasingly easily shared and
stored - has contributed to the rise of its popularity over the past years.

Despite the current overwhelming popularity of DNNs in the machine learning com-
munity, the application of deep learning still remains confronted with some difficul-
ties in practice, like the need for powerful computational resources to train complex
models on large datasets in a reasonable amount of time (e.g. the DNN VGG-Net
trained for ILSVRC2014 took between two to three consecutive weeks to be trained
on four NVIDIA Titan Black GPUs [36]). The lack of rigorous mathematical frame-
work surrounding DNNs also causes some deep learning aspects to still remain ob-
scure as of today. Some topics such as how to optimise DNNs hyper-parameters (e.g.
number of layers, number of neurons per layer, choice of the optimiser and learning
rate, etc.) [37, 38, 39] or to interpret the decisions process of a trained DNN [40, 41]
still remain active nowadays, especially in the image processing research field where
data are more abundant.

1.2 Motivation

This section provides more details on the motivation of the thesis with regards to
the context described in Section 1.1. Section 1.2.1 defines the problems that the
thesis attempts to address. Sections 1.2.2 and 1.2.3 provide two practical examples
- respectively about sensor-based emotion recognition and sensor-based pain recog-
nition - to illustrate the difficulties raised in the previous Section. Section 1.3 lists
the main contributions of this thesis and explains how they address the problems.
Finally, Section 1.4 provides more details about the structure of the thesis.

1.2.1 Context

Despite promising results obtained in many application fields of ubiquitous comput-
ing, deep learning methods remain difficult to apply to time-series data properly.
Two reasons mainly explain this phenomenon.

The first reason is that in order to be trained properly, DNNs tend to require an
even larger amount of data than other machine learning models. DNNs are models
which typically contain a high number of internal trainable parameters - in that
case, neural weights and biases. For instance, the matrix of weights between two
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