
Chapter 1

Introduction

1.1 Motivation and focus

Biological research, and natural sciences in general, commonly aquire new knowledge by
testing a hypothesis against experiment data. A multitude of experimental methods and
protocols has been developed over time to reveal the composition of biological systems.
Analysing complex biological systems aiming at a deeper understanding of the processes in
living systems requires the integration of experimental and computational research (Kitano
2002). Particularly rich information is present in high-dimensional single-cell data. Such
data is generated by methods like microscopy, flow cytometry or single-cell RNA sequencing,
where the abundance of up to thousands of cellular components for every individual cell in
a population is measured. These experiments thus capture the heterogeneity present in a cell
population.

When talking about reasons for heterogeneity in biological systems, one often differentiates
between intrinsic and extrinsic noise. Intrinsic noise is characterized by the absence of, or only
short time correlation between quantities in identical cells of a population. It is thought of as
a system inherent property that emerges from stochastic fluctuations in biochemical reactions
involving low copy number of genes and thereby causing heterogeneity in a population.
Extrinsic noise on the other hand exhibits long time correlations of the quantities in a
population (Elowitz et al. 2002; Swain et al. 2002; Munsky et al. 2009; Iversen et al. 2014).
Such persistent variance between cells in a population is caused by various factors including
the local environment or the history of cells (Snijder et al. 2009; Gut et al. 2015; Sandler
et al. 2015). Examples for extrinsic noise caused by history of cells are the cell cycle or cell
differentiation processes. Therein, the cellular components vary depending on the progress
of individual cells along the cell cycle or differentiation pathway.

Experimental single-cell data that is randomly spread around the population average is
observed for a stationary population with prevailing intrinsic noise (Figure 1.1 a). In contrast,
single-cell data may be spread around a path in the data space, if cells in the population are
additionally at different stages of a process (Figure 1.1 b).

Hence, information about a biological process is present in single-cell data where the
population is spread over that process in terms of: (1) shape of the path in data space,
(2) the distribution of cells along the path and (3) variance of the population around the
path. Furthermore, by changing these characteristics a cell population can be manipulated
to achieve a desired behavior. This may for example be inhibition of cell growth in cancer
treatment, neuron synchronization in jet-lag, or neuron desynchronization in Parkinson
patients.
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a b

Figure 1.1. Distinction between heterogeneity in single-cell data originating from (a) random
noise in a stationary cell population or (b) an additional underlying process.

Systems and computational biology exploit mathematical models to understand and
predict the dynamics of biological systems. A common way to mathematically model
molecular processes in a cell is via ordinary differential equations (ODE) models (Klipp et al.
2009; MacArthur et al. 2009). These models describe the concentration change of cellular
components in a single cell, or the average cell of a population under deterministic dynamics

ẋ(t) = f (x(t), u(t)) ,
x(0) = x0 .

(1.1)

Therein, the state variables x(t) ∈ Rn represent different molecular species in the cell which
can be affected by external inputs u(t) ∈ Rl such as media, drugs, optogenetic cues or
environmental factors. The dynamics are determined by the vector field f : Rn ×Rl → Rn.

A collection of nearly identical cells, also termed an ensemble, may be modeled as multi-
agent system, with each agent being a dynamical system with dynamics given by Eq. (1.1).
Mathematically, an ensemble can also be described in terms of a density function over a state
space p(x, t) (Wiener 1938) as shown in Figure 1.2. The dynamics are governed by partial
differential equations, belonging to the class of Liouville equations (Gyllenberg and Webb 1990;
Brockett 2012) of the general form

∂t p(x, t) = −〈∂x, f (x, u(t)) p(x, t)〉 ,
p(x, 0) = p0(x) ,

(1.2)

equipped with boundary conditions. The transport equation Eq. (1.2) describes how a density
p0 : Rn → R≥0 of initial states is advected with the flow of a nonlinear differential equation
of the form ẋ(t) = f (x(t), u(t)).

Brockett (2012) defines an ensemble system as a collection of nearly identical dynamical
systems which admit a certain degree of heterogeneity, and which are subject to the restriction
that they may only be manipulated or observed as a whole. This description is suitable for
single-cell experiments where measurement data consists mostly of population snapshots
which are sought as representative sample of the population. A population snapshot, taken
at a given instance in time, provides a vast number of output measurements. Yet, at the
same time information relating a measurement to the individual system that produced the
measurement is not provided, since the measurement process usually results in killing the
cell, making it impossible to measure that cell again. Furthermore, it is often inherent to
the experimental setups or treatment scenarios that cells within the population cannot be
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Figure 1.2. Flow of single cells and representation of cellular ensembles.

manipulated individually, but only through a common signal, such as a common stimulus
through a drug treatment. Control theory employs mathematical models to derive feedback
controllers with the goal to achieve a desired system behavior. The above limitations then
lead to the ensemble control problem where we derive a broadcast input signal based on
snapshot data to control a heterogeneous cell population.

Major goals of biological and medical research are to (1) understand the dynamics of
biological processes, which means to determine the vector field f (x(t), u(t)), and (2) control
the dynamics, which means to steer the state of a single cell x(t) or a cell population p(x, t)
to a desired behavior. This thesis presents analysis and control methods based on single-cell
data for cellular processes in heterogeneous populations. We will introduce the underlying
concepts in cell cycle studies. In particular, we (1) present a theory to identify the local vector
field along a biological process observed in single-cell data and (2) derive an ensemble control
formulation to achieve any desired distribution in a population of cellular oscillators.

By reducing the dimensionality of the original data or model to a 1-dimensional manifold,
these tasks boil down to problems where we want to analyse or control the distribution of
cells along a given process in 1-D. Our results obtained in a 1-dimensional framework are
transferable to higher dimensions by a homeomorphism between the description of a process
in 1-D and the corresponding high-dimensional model or data.

1.2 Contributions and Outline

In this section we present the outline and summarize the main results and contributions
of the individual chapters (illustrated in Figure 1.3). The thesis is structured in two parts:
Part I compromising Chapters 2 to 4 contains results on the analysis of biological processes
with single-cell data. Part II compromising Chapters 5 and 6 picks up these results for the
development of ensemble control algorithms for oscillating cell populations.
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Figure 1.3. Overview of the thesis

Part I Analysis

Chapter 2: Reconstructing temporal and spatial dynamics from single-cell pseudotime

Chapter 2 presents the fundamental theoretic concept to perform real-time analysis with
single-cell snapshot data of heterogeneous cell populations spread over different stages of
a biological process. First, we introduce the pseudotime representation of single-cell data
and briefly discuss its properties and limitations. We then address the arbitrariness of the
pseudotime scale by introducing the measure-preserving map of pseudotime into real-time,
in short MAPiT. After discussing properties of the method we apply MAPiT for a temporal
scale in cell cycle studies and for a spatial scale representing the distance from the surface in
cell spheroids. This chapter is based on the publications Kuritz et al. (2017) and Kuritz et al.
(2020b). Our main contributions in this chapter are the following:

• MAPiT provides a theoretic basis for the relation of pseudotime values to real temporal
and spatial scales.

• MAPiT recovers the progression rate on the process manifold in snapshot data from
heterogeneous cell populations.

• By applying MAPiT on two completely distinct problems we demonstrate its universal
nature and broad applicability for the analysis of cellular processes.

Chapter 3: Cell cycle analysis with ergodic principles and age-structured population
models

Chapter 3 examines the results on cell cycle analysis from Chapter 2 in a dynamical systems
perspective. Therein, the evolution of the distribution in pseudotime stems from the descip-
tion of progression of a single cell through its cell cycle by stochastic differential equation
(SDE). Based on ergodic theory, we derive a transformation of this model to age-structured
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population models. We do this for scenarios without noise, with extrinsic noise and with
intrinsic noise in the description of cell cycle progression. The scenario without noise recapit-
ulates the results from Chapter 2. For the scenarios with noise we derive methods to infer
noise strength and incorporate this information in the transformation. Finally, we discuss the
different approaches and evaluate the results against live-cell microscopy data. This chapter
is based on the publication Kuritz et al. (2017). Our main contributions in this chapter are
the following:

• We establish the relation between age-structured population models and cell cycle
analysis with snapshot data.

• We derive inference algorithms for intrinsic and extrinsic noise in cell cycle progression.

• We present a transformation from pseudotime to real-time by convolution of the
distributions which takes progression noise into account.

Chapter 4: Cell cycle progression inference

Chapter 4 presents an extension of MAPiT to non-stationary processes. The chapter deals
with the specific example where we want to infer altered cell cycle progression in response
to treatments. We first motivate the problem and describe data processing steps, which are
based on MAPiT. Next, we formally describe the partial differential equation (PDE) model
and the estimation problem for the inference of a time- and position-dependent cell cycle
progression rate. We present a way to efficiently solve the optimization problem by providing
parameter sensitivities. Finally we discuss properties of our method and demonstrate its
capability with one artificial and two experimental data sets. This chapter is based on the
publications Kuritz et al. (2020a). Our main contributions in this chapter are the following:

• We present a computational framework that allows the inference of changes in cell
cycle progression from static single-cell measurements.

• We efficient solve the estimation problem for the time- and cell cycle position-dependent
progression rate by caclulating parameter sensitivities.

Part II Control

Chapter 5: Passivity-based ensemble control for cell cycle synchronization

Chapter 5 introduces an ensemble control algorithm for cell cycle synchronization. First, we
introduce the research topic and formulate the problem in terms of the reduced phase model
approach and its relation to MAPiT. Next, we derive the passivity-based control algorithm
and provide necessary and sufficient controllability conditions for cell cycle synchronization.
Finally, we evaluate the approach in a realistic individual-based simulation framework where
we observe parameter ranges in which synchrony is achieved despite the naturally occurring
heterogeneity. This chapter is based on the publications Kuritz et al. (2018a) and Kuritz et al.
(2018b). Our main contributions in this chapter are the following:

• We introduce a state transformation for age-structured population models to enable
passivity-based controller design.
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• We derive an ensemble control algorithm to achieve cell cycle synchronization with
broadcast input signals.

• We present a theoretic condition for controllability and practical parameters ranges for
the synchronization in realistic setups.

Chapter 6: Ensemble control for cellular oscillators

Chapter 6 presents control strategies for the manipulation of processes in heterogeneous cell
populations, in particular, cellular oscillators. We introduce a population-level feedback that is
capable to achieve any desired distribution of cellular oscillators on their periodic orbit. First,
we motivate the research topic including a summary of major results in the field of ensemble
control. After deriving the control algorithm we provide controllability conditions which we
discuss for some real-world systems. Finally, we present the performance and limitations of
the algorithm in computational studies. This chapter is based on the publications Kuritz et al.
(2018a) and Kuritz et al. (2019). Our main contributions in this chapter are the following:

• We present an ensemble controller to achieve any distribution of cellular oscillators on
their limit cycle.

• We derive controllability conditions for convergence based on properties of the phase
response curve.

• Our controller is applicable to many problems, such as, phase shifting of the circadian
clock, cell cycle synchronization or desynchronizing of spiking neurons in Parkinson’s
disease.

Chapter 7: Conclusions

Chapter 7 summarizes the main results of this thesis, presents the conclusions and indicates
possible directions for future research.

Appendices

The results in this thesis build up on various theoretic concepts. We describe these concepts
in detail in Appendix A. Therein, we briefly introduce the system theoretic basis and control
theoretic concepts in Appendix A.1, the concept of reduced phase models in Appendix A.2
and Fourier analysis and circular moments for circular data in Appendix A.3. Furthermore,
we cover experimental protocols and data processing procedures in Appendix B, including a
review of the basic concepts of trajectory inference algorithms and the resulting pseudotem-
poral ordering in Appendix B.1. Appendices C and D provide a summary of the spheroid
growth model and the cell cycle model, respectively. Finally, Appendix E compromises
technical computations and proofs which we do not present in the main chapters in order to
improve readability.

The chapters in this thesis are based on severel publications. These publications were
addressed to different audiences. For example, Chapter 2 is based on Kuritz et al. (2020b)
which had a diverse but application oriented audience in mind. On the other hand, Chapter 6
is based on Kuritz et al. (2019) which is part of a special issue on Control and Network Theory
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for Biological Systems and thus aimed for a more theory oriented audience. Likewise, we
addressed the different chapters in this thesis to different audiences depending on our
understanding of the main contributions and their impact on the respective community.

7





Part I

Analysis

9





Chapter 2

Reconstructing temporal and spatial dynamics
from single-cell pseudotime

This chapter is based on the publication:

Karsten Kuritz et al. (2020b). ‘Reconstructing temporal and spatial dynamics from
single-cell pseudotime using prior knowledge of real scale cell densities’. In: Scientific
Reports 10.1, p. 3619. doi: 10.1038/s41598-020-60400-z.

Modern cytometry methods allow collecting complex, multi-dimensional data sets from
heterogeneous cell populations at single-cell resolution. While methods exist to describe
the progression and order of cellular processes from snapshots of such populations, these
descriptions are limited to arbitrary pseudotime scales. Deducing real-time dynamics from
pseudotemporal ordering however is challenging owing to the arbitrariness of the pseudotime
scale. In this chapter, we introduce the measure-preserving map of pseudotime into real-
time, in short MAPiT. MAPiT provides a universal transformation method that recovers
real-time dynamics of cellular processes from pseudotime scales by utilising knowledge
of the distributions on the real scales. As use cases, we applied MAPiT to two prominent
problems in the flow-cytometric analysis of heterogeneous cell populations: (1) recovering the
spatial arrangement of cells within multi-cellular spheroids prior to spheroid dissociation for
cytometric analysis, and (2) recovering the kinetics of cell cycle progression in unsynchronised
and thus unperturbed cell populations. Multicellular spheroids grown from cancer cells are
widely used as avascular tumour models and proved to be a valuable experimental system,
closing the gap between in vitro and in vivo studies. However, cumbersome preparation of
spheroid slices for imaging experiments with limited availability of fluorescent probes restricts
the practicability of spheroid experiments. By recovering the spatial position MAPiT reverts
the loss of spatial information in single-cell experiments. This enables high-throughput and
high-content studies of 3-D-spheroid models. Since MAPiT provides a theoretic basis for the
relation of pseudotime values to real temporal and spatial scales, it can be used broadly in
the analysis of cellular processes with snapshot data from heterogeneous cell populations.

The experimental data that we present in this chapter was prepared by the Morrison Lab at
the Institute of Cell Biology and Immunology at the University of Stuttgart. This chapter is
taken in parts from Kuritz et al. (2020b).
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Chapter 2 Reconstructing temporal and spatial dynamics from single-cell pseudotime

2.1 Background and problem formulation

Here, we briefly introduce the pseudotime representation of single cell data and state its
main shortcoming which will lead to the problem formulation in this chapter. We provide a
comprehensive discussion of the concept of trajectory inference algorithms in Appendix B.1.
Single-cell experiments such as flow cytometry, mass cytometry and single-cell RNA-
sequencing (scRNA-seq) capture the heterogeneity in cell populations (Klein et al. 2015;
Bandura et al. 2009) . The heterogeneity may originate from the fact that the measured cell
population is distributed across intermediate cellular states of a biological process, such as
cell cycle or cell differentiation (Saelens et al. 2019). This enables the study of biological
processes with pseudotime algorithms like CALISTA (Papili Gao et al. 2019), Wanderlust
(Bendall et al. 2014), Monocle (Trapnell et al. 2014) or diffusion maps (Haghverdi et al. 2014).
These algorithms can capture trajectories in data space by recovering a low-dimensional
structure in high-dimensional observations. By ordering cells on a lower dimensional process
manifold in the dataspace pseudotime algorithms provide access to the sequence of steps
during the process. Common pseudotime algorithms order cells on a pseudotime scale based
on a distance metric in the data space, and this metric differs between algorithms (Saelens
et al. 2019). Pseudotime values furthermore strongly depend on the measured cellular
components. The derived pseudotime thus is a quantitative value of the progression through
a biological processes. It is characterized by the relations of high-dimensional observations
and in general not equal to the true (time) scale (Weinreb et al. 2018). Hence pseudotime
does not directly correspond to real time but is rather a metric in data space of measured cell
states. This leads us to the following problem formulation:

Problem 2.1. Given a single-cell snapshot data with a pseudotemporal ordering from a
biological process, find a mapping from pseudotime scale to the true (time) scale.

To solve this problem and overcome the arbitrariness of pseudotime scales, we developed
MAPiT (measure-preserving map of pseudotime into real-time). MAPiT makes use of prior
knowledge of the distribution of cells on the real scale to derive the requested transformation
(Figure 2.1). We demonstrate MAPiT for a temporal scale in cell cycle studies and for a spatial
scale representing the distance from the surface in multi-cellular tumour spheroids (MCTS).
MAPiT robustly reconstructs the true scale of both processes which we verified with imaging
data.

2.2 MAPiT - MAP of pseudotime into real-Time

This section presents the theoretic concept for MAPiT and discusses some practical implica-
tions.

2.2.1 Measure-preserving transformation for probability distributions

The theoretic foundation of MAPiT originates from measure and probability theory. MAPiT
is based on a “measure-preserving transformation” which ensures that the area under
the curve is conserved when transforming a probability distribution. Consider a measure
space (X,L, λ), where X is a set, L is a σ− ring of measurable subsets of X, and λ is the
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2.2 MAPiT - MAP of pseudotime into real-Time
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Figure 2.1. MAPiT deduces process dynamics from single-cell snapshot data. Cell density
and marker trajectories on pseudotime scale vary with the distance measure used by the
pseudotime algorithm and real temporal trajectories cannot be deduced. Cell density, order
and trajectories for two markers on pseudotime scale are shown for an exemplary process.
As an example pseudotime position of the fifth displayed cell s5 and associated area under
the cell density curve AN=5 are indicated in gray. Nonlinear transformation of pseudotime
scale recovers true scale dynamics. MAPiT uses prior knowledge of cell densities on the real
scale to transform pseudotime to real time by enforcing equality for the area under the density
curves at corresponding points on both scales (gray areas). Cell order and marker trajectories
are shown for an exemplary uniform distribution on the real scale. Positions of cells across
the cell cycle (dashed, orange) or decreasing number of cells towards the center of spheroid
cultures (dotted, yellow) are other real scale densities.
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